Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(12): e2205725, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585360

RESUMO

1D carbon nanotubes have been widely applied in many fields, such as catalysis, sensing and energy storage. However, the long tunnel-like pores and relatively low specific surface area of carbon nanotubes often restrict their performance in certain applications. Herein, a dual-silica template-mediated method to prepare nitrogen-doped mesoporous carbon nanotubes (NMCTs) through co-depositing polydopamine (both carbon and nitrogen precursors) and silica nanoparticles (the porogen for mesopore formation) on a silica nanowire template is proposed. The obtained NMCTs have a hierarchical pore structure of large open mesopores and tubular macropores, a high specific surface area (1037 m2 g-1 ), and homogeneous nitrogen doping. The NMCT-45 (prepared at an interval time of 45 min) shows excellent performance in supercapacitor applications with a high capacitance (373.6 F g-1 at 1.0 A g-1 ), excellent rate capability, high energy density (11.6 W h kg-1 at a power density of 313 W kg-1 ), and outstanding cycling stability (98.2% capacity retention after 10 000 cycles at 10 A g-1 ). Owing to the unique tubular morphology, hierarchical porosity and homogeneous N-doping, the NMCT also has tremendous potential in electrochemical catalysis and sensing applications.

2.
Front Chem ; 10: 874675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494639

RESUMO

Large-scale synthesis of graphene-based nanomaterials in stirred tank reactor (STR) often results in serious agglomeration because of the poor control during micromixing process. In this work, reactive impingement mixing is conducted in a two-stage impinging jet microreactor (TS-IJMR) for the controllable and scale-up synthesis of nickel-cobalt boride@borate core-shell nanostructures on RGO flakes (NCBO/RGO). Benefiting from the good process control and improved micromixing efficiency of TS-IJMR, NCBO/RGO nanosheet provides a large BET surface area, abundant of suitable mesopores (2-5 nm), fast ion diffusion, and facile electron transfer within the whole electrode. Therefore, NCBO/RGO electrode exhibits a high specific capacitance of 2383 F g-1 at 1 A g-1, and still retains 1650 F g-1 when the current density is increased to 20 A g-1, much higher than those of nickel boride@borate/RGO (NBO/RGO) and cobalt boride@borate/RGO (CBO/RGO) synthesized in TS-IJMR, as well as NCBO/RGO-S synthesized in STR. In addition, an asymmetric supercapacitor (NCBO/RGO//AC) is constructed with NCBO/RGO and activated carbon (AC), which displays a high energy density of 53.3 W h kg-1 and long cyclic lifespan with 91.8% capacitance retention after 5000 charge-discharge cycles. Finally, NCBO/RGO is used as OER electrocatalyst to possess a low overpotential of 309 mV at a current density of 10 mA cm-2 and delivers a good long-term durability for 10 h. This study opens up the potential of controllable and scale-up synthesis of NCBO/RGO nanosheets for high-performance supercapacitor electrode materials and OER catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...